VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with $1++$ Grade
B.E. (E.C.E.) III-Semester Main \& Backlog Examinations, Jan./Feb.-2024

Digital Logic Design
Time: $\mathbf{3}$ hours
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A (10×2 $=20$ Marks)

Q. No.	Stem of the question	M	L	CO	PO	PSO
1.	State and prove De Morgan's theorem.	2	1	1	1	1
2.	Realize 2-input EX-OR gate using NOR gate.	2	1	1	2	1
3.	Compare the function of decoder and demultiplexer?	2	1	2	1	1
4.	Design half adder using only NAND gates?	2	2	2	2	1
5.	Implement the following boolean expressions using a suitable PLA, $\begin{aligned} & A(x, y, z)=\sum m(1,2,4,6) \\ & B(x, y, z)=\sum m(0,1,6,7) \end{aligned}$	2	3	3	3	1
6.	What are the steps involved in state minimization?	2	1	3	1	1
7.	What is the difference between \$display and \$monitor?	2	1	4	1	1
8.	Write the verilog program for 2 bit comparator in gate level modeling?	2	3	4	2	1
9.	What is the significance of sequential and parallel blocks?	2	1	5	1	1
10.	Distinguish Melay and Moore FSM?	2	2	5	2	1
	Part-B ($5 \times 8=40 \mathrm{Marks}$)					
11. a)	How do you convert a gray number to binary? Generate a 4-bit gray code directly using the mirror image property?	4	2	1	2	1
b)	Simplify the following function using K-map and implements it using basic logic gates. $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,2,8,9,10,14)+\mathrm{d}(3,7,11,15)$	4	3	1	3	1
12. a)	Design and explain a 4-bit carry look ahead adder.	4	2	2	3	1
b)	Outline full adder and also implement it using 4X1 multiplexer.	4	2	2	3	1
13. a)	Design a 4-Bit bidirectional shift register using JK flip-flops having right and left data inputs and mode control M such that $M=0$ left shift , $M=1$ right shift.	4	3	3	4	1
b)	Design a sequence detector which produces an output ' 1 ' every time the sequence ' 1001 ' is detected and an output ' 0 ' at all other times. Consider non overlapping sequence.	4	4	3	3	1

14. a) Discuss various gate delays in verilog HDL?
b) Develop a verilog code for the following function. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}((0,3,4,5,11,12,13,15)+\mathrm{d}(2,6,8)$ in gate level model and write test bench to verify its functionality?
15. a) Draw and explain the logic synthesis flow chart.
b) Explain different types of conditional statements used in behavioral modeling.
16. a) Write short notes on binary codes
b) What is encoder? Design an octal to binary encoder.
17. Answer any two of the following:
a) Design 4 bit synchronous up counter using D-flip flop.
b) Write a verilog code using switch level modeling for universal gates?
c) Write a verilog code for 8:1 MUX using behavioral modeling?

$|$| 3 | 2 | 4 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 5 | 4 | 4 | 3 | 1 |
| 4 | 2 | 5 | 2 | 1 |
| 4 | 3 | 5 | 2 | 1 |
| 4 | 1 | 1 | 2 | 1 |
| 4 | 3 | 2 | 3 | 1 |
| 4 | 3 | 3 | 4 | 1 |
| 4 | 2 | 4 | 3 | 1 |
| 4 | 2 | 5 | 3 | 1 |

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	20%
ii)	Blooms Taxonomy Level -	38.75%
iii)	Blooms Taxonomy Level - $3 \& 4$	41.25%

